

Mathematics Specialist Test 4 2019

Integration Techniques & Applications of Integral Calculus

NAME: _____

TEACHER: Mrs Da Cruz

Resource Free Section

26 marks 25 minutes

Question 1

(a) $\int_{-\pi}^{\pi} |\sin x| dx$

(Hint: sketch the function first.)

[3]

[3, 2, 6, 4, 5, 2, 4 = 26 marks]

(b) Given that $\frac{d}{dx}[xe^x - e^x] = xe^x$, find $\int xe^x + x \, dx$.

(c) Use the substitution $u = \ln x$ to determine $\int \frac{\sqrt{\ln x} + \ln \sqrt{x}}{x} dx$. [6]

(d) Using partial fractions, find $\int \frac{1}{2x^2 - x - 6} dx$

[5]

(e)
$$\int \frac{e^{2x}}{3+2e^{2x}} dx$$

(f) $\int_0^1 \frac{1-x}{x+1} dx$ (*Hint: You could use* u = x + 1)

[4]

Mathematics Specialist Test 4 2019

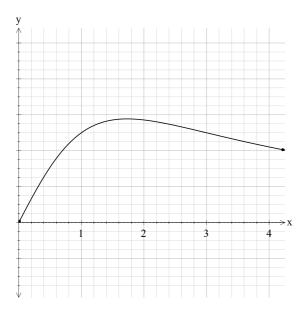
Integration Techniques & Applications of Integral Calculus

NAME:

TEACHER: Mrs Da Cruz

Resource Rich Section

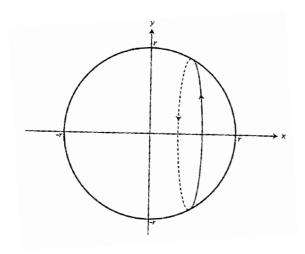
19 marks 25 minutes


One unfolded A4 page of notes, SCSA formulae booklet and ClassPad calculator permitted. Show sufficient working for marks to awarded.

Question 2

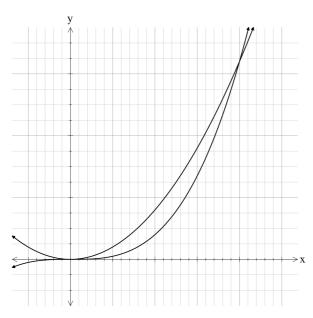
[2 marks]

Consider the area under the curve $f(x) = \frac{2x}{3+x^2}$ between x = 1 and x = 3. Using four mid-point rectangles


approximate the area.

Question 3

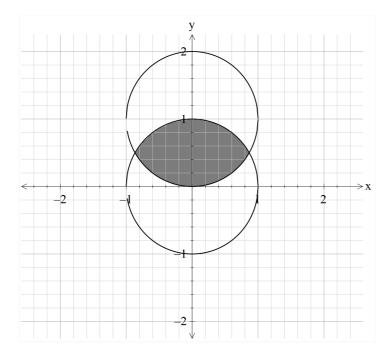
[4 marks]


Show that the volume of a sphere, $V = \frac{4\pi r^3}{3}$, may be generated by rotating the circle $x^2 + y^2 = r^2$ about the *x*-axis.

Question 4

[5 marks]

Consider the region bounded by the curves $f(x) = 4x^2$ and $g(x) = x^3$ for $x \ge 0$. Determine the volume of the solid formed when the region is rotated about the *y*-axis.



Question 5

[8 marks]

Find the area of the lens shape formed between two circles, $x^2 + y^2 = 1$ and $x^2 + (y - 1)^2 = 1$.

(Hints: You will need to first find the relevant semi-circle equations. Use the substitution $x = \sin \theta$)

